\( \because \int \tan ^{-1} \sqrt{x} d x \) is equal to \( \mathrm{...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=HL2Dwb_xJhg
\( \because \int \tan ^{-1} \sqrt{x} d x \) is equal to
\( \mathrm{P} \)
(A) \( (x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+\mathrm{C} \)
(B) \( x \tan ^{-1} \sqrt{x}-\sqrt{x}+C \)
W)
(C) \( \sqrt{x}-x \tan ^{-1} \sqrt{x}+C \)
(D) \( \sqrt{x}-(x+1) \tan ^{-1} \sqrt{x}+C \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw