\[ \begin{array}{l} \int_{-2011}^{2011}\left\{\left[x^{2011}+x^{2009}+x^{2007}+x^{2005}+\ldots+x....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=IMB8a3AMqPU
\[
\begin{array}{l}
\int_{-2011}^{2011}\left\{\left[x^{2011}+x^{2009}+x^{2007}+x^{2005}+\ldots+x\right]\right\} d x \\
+\int_{-201}^{201}\left[\left\{x^{2010}+x^{2008}+x^{2006}+\ldots+1\right\}\right] d x \text { is equal }
\end{array}
\]
\( \mathrm{P} \)
\( +\int_{-201}^{2011}\left[\left\{x^{2010}+x^{2008}+x^{2006}+\ldots+1\right\}\right] d x \) is equal
to (where [.] represents the greatest integer function and \( \{ \).\( \} represents the fractional part \) function)
(1) zero
(2) \( 2 \times(2011) \) !
(3) \( 2^{2011} \)
(4) \( 2 \times(2010) \) !
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live