Question
If \( S_{n}=\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\ldots+\frac{1}{n+\sqrt{n^{2}}}....
Question
\( \mathrm{P} \)
If \( S_{n}=\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\ldots+\frac{1}{n+\sqrt{n^{2}}} \) then \( \lim _{n \rightarrow \infty} S_{n} \) is equal to
\( 1 \quad \log _{e} 3 \)
\( 2 \quad 2+2 \log _{e} 2 \)
\( 3 \quad 2+\log _{e} 2 \)
\( 4 \quad 2 \log _{e} 2 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-21 | Question
The value of \( \int_{1}^{e}\left(\left(\frac{1}{x}-x+x \ln x\right) \sin x\right) d x .... |
2024-01-21 | Question
Let \( I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x+2^{x} \cos x}{\left(1+4^{x}\right) \sin x.... |
2024-01-21 | \( \lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\sin \f.... |
2024-01-21 | \[
\begin{array}{l}
\int_{-2011}^{2011}\left\{\left[x^{2011}+x^{2009}+x^{2007}+x^{2005}+\ldots+x.... |
2024-01-21 | If \( \int_{0}^{a} f(2 a-x) d x=4 \) and \( \int_{0}^{a} f(x) d x=2 \), then
\( \int_{0}^{2 a} f.... |
2024-01-21 | Question Match of the following lists:
\begin{tabular}{|c|c|c|c|}
\hline & List-I & & List-II \\.... |
2024-01-21 | The value of the definite integral \( \int_{1}^{\infty}\left(e^{x+1}+e^{3-x}\right)^{-1} d x \),.... |
2024-01-21 | Question
The value of definite integration \( \int_{1 / 2018}^{2018} \frac{\cos x}{x\left(\cos x.... |
2024-01-21 | Question
The value of \( \int_{0}^{1} \frac{\ln (x+1)}{1+x^{2}} d x \) is
\( 1 \frac{\pi \ell n .... |
2024-01-21 | Question
What is the value of the following integral?
\[
\int_{1 / 2020}^{2020} \frac{\tan ^{-1}.... |
2024-01-21 | Question
If \( S_{n}=\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\ldots+\frac{1}{n+\sqrt{n^{2}}}.... |
2024-01-21 | Question Match of the following lists:
\begin{tabular}{|c|c|c|c|}
\hline & List-I & & \begin{tab.... |
2024-01-21 | Question
Suppose for every integer \( n, \int_{n}^{n+1} f(x) d x=n^{2} \), then the value of \( .... |
2024-01-21 | Question
\( \int_{1}^{e} \frac{1+\log _{10} x}{x} d x \) is equal to
\( 1 \frac{1}{2} \log _{10}.... |
2024-01-21 | Question
If \( \vec{x} \) and \( \vec{y} \) be two non-zero vectors such that
\( |\vec{x}+\vec{y.... |
2024-01-21 | Question
Let \( \vec{a} \) and \( \vec{b} \) be two vectors such that
\( |\vec{a}+\vec{b}|^{2}=|.... |
2024-01-21 | Question
Let \( \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b} \) and \( \vec{c}=\hat{j}-\hat{k} \) be.... |
2024-01-21 | Question
Let \( O \) be the origin, and \( \overrightarrow{O X}, \overrightarrow{O Y}, \overrigh.... |
2024-01-21 | Question
Let \( \vec{x}, \vec{y} \) and \( \vec{z} \) be three vectors each of magnitude
\( \sqr.... |
2024-01-21 | Question
Let \( O \) be the origin, and \( \overrightarrow{O X}, \overrightarrow{O Y}, \overrigh.... |
2024-01-21 | Question
Let \( \vec{a}=\hat{i}-\hat{j}+2 \hat{k} \) and \( \vec{b} \) be a vector such that
\( .... |