\begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ Column -I } & \multicolumn{2}{c|}{ Colum....
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column -I } & \multicolumn{2}{c|}{ Column -II } \\
\hline (A) & \begin{tabular}{l}
Radius of orbit \\
depends on principal \\
quantum number
\end{tabular} & (p) & Increase \\
\hline (B) & \begin{tabular}{l}
Due to orbital motion \\
of electron, magnetic \\
field arises at the \\
center of nucleus is \\
proportional to \\
principal quantum \\
number as
\end{tabular} & Decrease & \\
\hline (C) & \begin{tabular}{l}
If electron is going \\
from lower energy \\
level to higher energy \\
level, then velocity of \\
electron will
\end{tabular} & (r) & Proportional to \( \frac{1}{n^{2}} \) \\
\hline (D) & \begin{tabular}{l}
If electron is going \\
From lower energy \\
level to higher energy \\
level, then total \\
energy of electron \\
will
\end{tabular} & Proportional to \( n^{2} \) \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
Codes :
A B
C
D
(1) \( \mathrm{t} \)
(2) \( \mathrm{p} \)
(3) \( \mathrm{s} \quad \mathrm{t} \)
(4)
q
p
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live