In each situation of Column I, a physical quantity related to orbiting electron in hydrogen-like....
In each situation of Column I, a physical quantity related to orbiting electron in hydrogen-like atom is given. The terms ' \( Z \) ' and ' \( n \) ' given in Column II have usual meaning in Bohr' theory. Match the quantities in Column I with the terms they depend on it Column II
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column -I } & \multicolumn{2}{c|}{ Column -II } \\
\hline (A) & \begin{tabular}{l}
Frequency of \\
Orbiting electron
\end{tabular} & (p) & \begin{tabular}{l}
Is directly \\
proportional \\
to Z \( { }^{2} \)
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
Angular of \\
momentum \\
orbiting electron
\end{tabular} & \begin{tabular}{l}
(q) directly \\
proportional \\
to n
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
Magnetic moment \\
of orbiting electron
\end{tabular} & (r) & \begin{tabular}{l}
Is inversely \\
proportional \\
to n \( ^{3} \)
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
The average \\
current due to \\
orbiting of electron
\end{tabular} & (s) & \begin{tabular}{l}
Is \\
independent \\
of Z
\end{tabular} \\
\hline
\end{tabular}
Codes :
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{p}, \mathrm{r} \) & \( \mathrm{q}, \mathrm{s} \) & \( \mathrm{q}, \mathrm{s} \) & \( \mathrm{p}, \mathrm{r} \) \\
(2) & \( \mathrm{q}, \mathrm{s} \) & \( \mathrm{p}, \mathrm{r} \) & \( \mathrm{q}, \mathrm{r} \) & \( \mathrm{p}, \mathrm{q} \) \\
(3) & \( \mathrm{p}, \mathrm{q} \) & \( \mathrm{q}, \mathrm{r} \) & \( \mathrm{p}, \mathrm{r} \) & \( \mathrm{q}, \mathrm{s} \) \\
(4) & \( \mathrm{q}, \mathrm{r} \) & \( \mathrm{p}, \mathrm{q} \) & \( \mathrm{q}, \mathrm{s} \) & \( \mathrm{p}, \mathrm{s} \)
\end{tabular}
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live