Bridging Shannon and Hamming: Codes for Computationally Simple Channels

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=FLQusLBrVdk



Duration: 1:04:43
203 views
3


Coding theory has had two divergent schools of thought, dating back to its origins, based on the underlying model of the noisy channel. Shannon's theory modeled the channel as a stochastic process with a known probability law. Hamming's work suggested a worst-case model, where the channel is subject only to a limit on the number of errors it may cause. These two approaches share several common tools, however in terms of quantitative results, the classical results in the harsher Hamming model are much weaker. In this talk, we will discuss a line of research aimed at bridging between these models. We will begin by surveying some approaches that rely on setup assumptions (such as shared randomness) to construct codes against worst-case errors with information rate similar to what is possible against random errors. We then turn to our results for computationally bounded channels, which can introduce an arbitrary set of errors as long as (a) the total fraction of errors is bounded by a parameter p, and (b) the process which adds the errors is sufficiently ``simple'' computationally. Such channel models are well-motivated since physical noise processes may be mercurial, but are not computationally intensive. Also, as with codes for worst-case errors, codes for such channels can handle errors whose true behavior is unknown or varying over time. We will describe an explicit construction of polynomial time encodable/decodable codes with rate approaching Shannon capacity 1-h(p) that can correct an arbitrary error pattern with total fraction of errors bounded by p, provided the channel's action is oblivious to the codeword. We will hint at an extension to channels limited to online logarithmic space that gives efficient codes with optimal rate that enable recovery of a short list containing the correct message. (A similar claim holds for channels admitting polynomial size circuits, assuming the existence of pseudorandom generators.) Our results do not use any shared randomness or other setup assumptions. Based on joint work with Adam Smith.




Other Videos By Microsoft Research


2016-08-16Coding4Fun XAPfest!
2016-08-16Your Abstractions are Worth Powerless! Non-Volatile Storage and Computation on Embedded Devices
2016-08-16Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems
2016-08-16Interpreting the Community: Information Practices and/for Deviance
2016-08-16Pretty Good Democracy for a variety of voting schemes
2016-08-16Learning Valuation Functions
2016-08-16Applying Semantic Analyses to Content-based Recommendation and Document Clustering
2016-08-16Fusing Mobile, Sensor, and Social Computing in the Cloud To Enable Context-Aware Applications
2016-08-16The Past, Present, and Future of Video Telephony
2016-08-16Multi-People Tracking through Global Optimization
2016-08-16Bridging Shannon and Hamming: Codes for Computationally Simple Channels
2016-08-16Using Program Verification Tools in Teaching
2016-08-16Crowdsourcing for Statistical Machine Translation
2016-08-16Computational Science Research in Latin America
2016-08-16The Laplacian Paradigm: Emerging Algorithms for Massive Graphs
2016-08-16YouΓÇÖre the Manager but IΓÇÖm the Mayor: Understanding Foursquare Check-ins in Claimed Venues
2016-08-16Beyond the Gaussian Universality Class
2016-08-16Microsoft Academic Search: Next-Generation Scholarly Discovery
2016-08-16Semantic Knowledge for Commodity Computing: Focus on Information Mining and Intelligence
2016-08-16Semantic Knowledge for Commodity Computing: Myth or Reality? Information and Knowledge Acquisition
2016-08-16Listen-n-feel: An Emotion Sensor on the Phone Using Speech Processing and Cloud Computing



Tags:
microsoft research