Coding Challenge #70: Nearest Neighbors Recommendation Engine - Part 3
In this multi-part coding challenge, I create a movie recommendation engine using the "nearest neighbor" algorithm. Code: https://thecodingtrain.com/challenges/70-nearest-neighbors-recommendation-engine
p5.js Web Editor Sketches:
🕹️ Nearest Neighbors, Part 1: https://editor.p5js.org/codingtrain/sketches/S2jhCLS9m
🕹️ Nearest Neighbors, Part 2: https://editor.p5js.org/codingtrain/sketches/0tBrSEhTg
🕹️ Nearest Neighbors, Part 3: https://editor.p5js.org/codingtrain/sketches/aIYPcl4me
🕹️ Nearest Neighbors, Part 3 with added styling: https://editor.p5js.org/codingtrain/sketches/-WBVNk45K
Other Parts of this Challenge:
📺 Nearest Neighbors Recommendation Engine - Part 1: https://youtu.be/N8Fabn1om2k
📺 Nearest Neighbors Recommendation Engine - Part 2: https://youtu.be/Lo89NLmSgl0
🎥 Previous video: https://youtu.be/flxOkx0yLrY?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 Next video: https://youtu.be/LFU5ZlrR21E?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 All videos: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
References:
📕 The Nature of Code Part 2 (Spring 2017) - Intelligence and Learning: https://github.com/shiffman/NOC-S17-2-Intelligence-Learning
📓 Notes on Pearson's correlation coefficient: https://github.com/shiffman/NOC-S17-2-Intelligence-Learning/wiki/Glossary:-Statistics#correlation
Videos:
🚂 My Video on Associative Arrays: https://www.youtube.com/watch?v=_5jdE6RKxVk
🔴 Coding Train Live 91: https://youtu.be/Do_Gftp_oug?t=7983s
Related Coding Challenges:
🚂 #98 Quadtree: https://youtu.be/OJxEcs0w_kE
🚂 #104 Linear Regression with TensorFlow.js: https://youtu.be/dLp10CFIvxI
🚂 #105 Polynomial Regression with TensorFlow.js: https://youtu.be/tIXDik5SGsI
Timestamps:
0:00 Introduction
1:14 Loop through the titles
3:45 Add "not seen" option
4:20 Predict ratings
5:10 Add the drop-downs to an array
7:57 Change "not seen" to null
9:38 Change euclidianDistance() to receive user object
13:03 Format similarity score
18:06 Predict star rating
25:44 Weighted sum of similarity scores
28:20 Error checking
30:10 What could you do?
31:18 movielens
Editing by Mathieu Blanchette
Animations by Jason Heglund
Music from Epidemic Sound
🚂 Website: http://thecodingtrain.com/
👾 Share Your Creation! https://thecodingtrain.com/guides/passenger-showcase-guide
🚩 Suggest Topics: https://github.com/CodingTrain/Suggestion-Box
💡 GitHub: https://github.com/CodingTrain
💬 Discord: https://thecodingtrain.com/discord
💖 Membership: http://youtube.com/thecodingtrain/join
🛒 Store: https://standard.tv/codingtrain
🖋️ Twitter: https://twitter.com/thecodingtrain
📸 Instagram: https://www.instagram.com/the.coding.train/
🎥 Coding Challenges: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 Intro to Programming: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA
🔗 p5.js: https://p5js.org
🔗 p5.js Web Editor: https://editor.p5js.org/
🔗 Processing: https://processing.org
📄 Code of Conduct: https://github.com/CodingTrain/Code-of-Conduct
This description was auto-generated. If you see a problem, please open an issue: https://github.com/CodingTrain/thecodingtrain.com/issues/new
#nearestneighbors #similarityscore #euclideandistance #associativearrays #p5js #javascript