Coding Challenge #70: Nearest Neighbors Recommendation Engine - Part 3

Subscribers:
1,740,000
Published on ● Video Link: https://www.youtube.com/watch?v=aMtckmWAzDg



Duration: 33:02
23,374 views
499


In this multi-part coding challenge, I create a movie recommendation engine using the "nearest neighbor" algorithm. Code: https://thecodingtrain.com/challenges/70-nearest-neighbors-recommendation-engine

p5.js Web Editor Sketches:
🕹️ Nearest Neighbors, Part 1: https://editor.p5js.org/codingtrain/sketches/S2jhCLS9m
🕹️ Nearest Neighbors, Part 2: https://editor.p5js.org/codingtrain/sketches/0tBrSEhTg
🕹️ Nearest Neighbors, Part 3: https://editor.p5js.org/codingtrain/sketches/aIYPcl4me
🕹️ Nearest Neighbors, Part 3 with added styling: https://editor.p5js.org/codingtrain/sketches/-WBVNk45K

Other Parts of this Challenge:
📺 Nearest Neighbors Recommendation Engine - Part 1: https://youtu.be/N8Fabn1om2k
📺 Nearest Neighbors Recommendation Engine - Part 2: https://youtu.be/Lo89NLmSgl0

🎥 Previous video: https://youtu.be/flxOkx0yLrY?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 Next video: https://youtu.be/LFU5ZlrR21E?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 All videos: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH

References:
📕 The Nature of Code Part 2 (Spring 2017) - Intelligence and Learning: https://github.com/shiffman/NOC-S17-2-Intelligence-Learning
📓 Notes on Pearson's correlation coefficient: https://github.com/shiffman/NOC-S17-2-Intelligence-Learning/wiki/Glossary:-Statistics#correlation

Videos:
🚂 My Video on Associative Arrays: https://www.youtube.com/watch?v=_5jdE6RKxVk
🔴 Coding Train Live 91: https://youtu.be/Do_Gftp_oug?t=7983s

Related Coding Challenges:
🚂 #98 Quadtree: https://youtu.be/OJxEcs0w_kE
🚂 #104 Linear Regression with TensorFlow.js: https://youtu.be/dLp10CFIvxI
🚂 #105 Polynomial Regression with TensorFlow.js: https://youtu.be/tIXDik5SGsI

Timestamps:
0:00 Introduction
1:14 Loop through the titles
3:45 Add "not seen" option
4:20 Predict ratings
5:10 Add the drop-downs to an array
7:57 Change "not seen" to null
9:38 Change euclidianDistance() to receive user object
13:03 Format similarity score
18:06 Predict star rating
25:44 Weighted sum of similarity scores
28:20 Error checking
30:10 What could you do?
31:18 movielens

Editing by Mathieu Blanchette
Animations by Jason Heglund
Music from Epidemic Sound

🚂 Website: http://thecodingtrain.com/
👾 Share Your Creation! https://thecodingtrain.com/guides/passenger-showcase-guide
🚩 Suggest Topics: https://github.com/CodingTrain/Suggestion-Box
💡 GitHub: https://github.com/CodingTrain
💬 Discord: https://thecodingtrain.com/discord
💖 Membership: http://youtube.com/thecodingtrain/join
🛒 Store: https://standard.tv/codingtrain
🖋️ Twitter: https://twitter.com/thecodingtrain
📸 Instagram: https://www.instagram.com/the.coding.train/

🎥 Coding Challenges: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
🎥 Intro to Programming: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

🔗 p5.js: https://p5js.org
🔗 p5.js Web Editor: https://editor.p5js.org/
🔗 Processing: https://processing.org

📄 Code of Conduct: https://github.com/CodingTrain/Code-of-Conduct

This description was auto-generated. If you see a problem, please open an issue: https://github.com/CodingTrain/thecodingtrain.com/issues/new

#nearestneighbors #similarityscore #euclideandistance #associativearrays #p5js #javascript




Other Videos By The Coding Train


2017-06-03Coding Train Live 95: End of Session 3 + Start of Session 4 of "Intelligence and Learning"
2017-05-313.4: Linear Regression with Gradient Descent - Intelligence and Learning
2017-05-303.3: Linear Regression with Ordinary Least Squares Part 2 - Intelligence and Learning
2017-05-293.2: Linear Regression with Ordinary Least Squares Part 1 - Intelligence and Learning
2017-05-27Coding Train Live 94: Session 3 of “Intelligence and Learning” - Part 3
2017-05-25Coding Train Live 93: Session 3 of “Intelligence and Learning” Continued
2017-05-25ITP Spring Show 2017
2017-05-18Coding Challenge #71: Minesweeper
2017-05-17Live Stream Archive - ITP Spring Show 2017
2017-05-12Live Stream #92: Minesweeper
2017-05-11Coding Challenge #70: Nearest Neighbors Recommendation Engine - Part 3
2017-05-10Coding Challenge #70: Nearest Neighbors Recommendation Engine - Part 2
2017-05-09Coding Challenge #70: Nearest Neighbors Recommendation Engine - Part 1
2017-05-083.1: Introduction to Session 3 - What is Machine Learning?
2017-05-062.2: Exercise Ideas: Session 2 - Intelligence and Learning
2017-05-05Live Stream #91: Session 3 of “Intelligence and Learning”
2017-05-051.2: Exercise Ideas: Session 1 - Intelligence and Learning
2017-05-042.1: Introduction to Session 2 - Intelligence and Learning
2017-05-039.8: Genetic Algorithm: Improved Pool Selection - The Nature of Code
2017-05-02Coding Challenge #35.5: TSP with Genetic Algorithm and Crossover
2017-05-01Coding Challenge #35.4: Traveling Salesperson with Genetic Algorithm



Tags:
JavaScript (Programming Language)
live
programming
daniel shiffman
creative coding
coding challenge
tutorial
coding
challenges
coding train
the coding train
nature of code
artificial intelligence
live stream
itp nyu
intelligence creative coding
intelligence and learning
machine learning
machine learning art
knn machine learning
may the forth
star wars day
k nearnest neighbor
k nearest neighbour
regression machine learning
classification machine learning