Comprehension Let \( M=\left\{(x, y) R \times R: x^{2}+y^{2} \leq r^{2}\right\} \),
where \( r0 \). Consider the geometric progression
\( a_{n}=\frac{1}{2^{n-1}}, n=1,2,3, \ldots \). Let \( S_{0}=0 \) and for \( n \geq 1 \), let \( S_{n} \) denote the
sum of the first \( n \) terms of this progression. For \( n \geq 1 \), let \( C_{n} \) denote the circle with center \( \left(S_{n-1}, 0\right) \) and radius \( a_{n} \) and \( D_{n} \) denote the circle with center \( \left(S_{n-1}, S_{n-1}\right) \) and radius \( a_{n} \).
- Consider \( M \) with \( r=\frac{1025}{513} \). Let \( \mathrm{k} \) be the number of all those circles \( C_{n} \) that are inside \( M \). Let 1 be the maximum possible number of circles among these \( k \) circles such that no two - circles intersect. Then
- (a) \( k+21=22 \)
(b) \( 2 k+1=26 \)
- (c) \( 2 k+31=34 \)
(d) \( 3 k+21=40 \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live