Comprehension \( \quad: \) Two consecutive irreversible first order reactions can be represented...
Comprehension \( \quad: \) Two consecutive irreversible first order reactions can be represented by \( \mathrm{A} \stackrel{\mathrm{k}_{1}}{\longrightarrow} \mathrm{B} \stackrel{\mathrm{k}_{2}}{\longrightarrow} \mathrm{C} \) The rate equation for \( \mathrm{A} \) is readily integrated to obtain
\[
[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}} ; \text { and }[\mathrm{B}]_{\mathrm{t}}=\frac{\mathrm{k}_{1}[\mathrm{~A}]_{0}}{\mathrm{k}_{2}-\mathrm{k}_{1}}\left[\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}-\mathrm{e}^{-\mathrm{k}_{2} \mathrm{t}}\right]
\]
When \( \mathrm{k}_{1}=1 \mathrm{~s}^{-1} \) and \( \mathrm{k}_{2}=50 \mathrm{~s}^{-1} \); select most appropriate graph
(a)
(c)
(b)
(d)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live