Consider all possible permutations of the letters of the word ENDEANOEL. Match the statement/Exp....
Consider all possible permutations of the letters of the word ENDEANOEL.
Match the statement/Expressions on the left with the Statements/Expressions on the right
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
The number of \\
permutations containing \\
the word ENDEA is
\end{tabular} & (P) & \\
\hline (B) & \begin{tabular}{l}
The number of \\
permutations in which the \\
letter \( E \) occurs in the first \\
and the last position is
\end{tabular} & (Q) & \( 2 \times 5 \) ! \\
\hline (C) & \begin{tabular}{l}
The number of \\
permutations in which none \\
of the letters D, L, N occurs \\
in the last five positions is
\end{tabular} & (R) & \( 7 \times 5 \) ! \\
\hline (D) & \begin{tabular}{l}
The number of \\
permutations in which the \\
letters A, E, O occur only in \\
odd position is
\end{tabular} & \( 21 \times 5 ! \) \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{P} \); \( \mathrm{B} \rightarrow \mathrm{Q} \); \( \mathrm{C} \rightarrow \mathrm{R} \); \( \mathrm{D} \rightarrow \mathrm{S} \)
(2) \( \mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{Q} \)
(3) \( \mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S} \)
(4) \( \mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{Q} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live