Consider two points \( A \equiv(1,2) \) and \( B \equiv(3,-1) \). Let \( M \) be a point on the ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=lktDOG3qV98
Consider two points \( A \equiv(1,2) \) and \( B \equiv(3,-1) \). Let \( M \) be a point on the straight line \( L \equiv x+y=0 \). If \( \mathrm{M} \) be a point on the line \( \mathrm{L}=0 \) such that \( \mathrm{AM}+\mathrm{BM} \) is minimum, then the reflection of \( \mathrm{M} \) in the line
\( P \) \( x=y \) is -
(A) \( (1,-1) \)
(B) \( (-1,1) \)
(C) \( (2,-2) \)
(D) \( (-2,2) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live