Differentiate the following \[ \sqrt{\log \left(\sin \left(\frac{x^...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=kl1ou1PSAiw



Duration: 0:00
11 views
0


Differentiate the following
\[
\sqrt{\log \left(\sin \left(\frac{x^{2}}{3}-1\right)\right)} \text {. }
\]
(W)
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/




Other Videos By PW Solutions


2023-02-25Differentiate the following w.r.t. \( \mathbf{x} \) : If \( x^{p} y...
2023-02-25Prove that, \[ \frac{d}{d x}\left[\log \frac{x^{2}+x+1}{x^{2}-x+1}+...
2023-02-25If \( x=f(t), y=g(t) \) possess second order derivatives for all \(...
2023-02-25The behaviour of ideal gas is governed by various gas laws which are described by mathematical s...
2023-02-25If \( \frac{1}{2}\left(e^{y}-e^{-y}\right)=x \), prove that : \( \f...
2023-02-25Differentiate the following w.r.t. \( \mathbf{x} \) : \[ x^{\sin x+...
2023-02-25If \( y=\sin [\sin (\log 3 x)] \), find \( \frac{d y}{d x} \).
2023-02-25Differentiate the following w.r.t. \( \mathbf{x} \) : \[ x^{\sin 2 ...
2023-02-25If \( e^{x+y}=x y \), show that \( \frac{d y}{d x}=\frac{y(1-x)}{x(...
2023-02-25Find \( \frac{d y}{d x} \) when: \[ x y+x e^{-y}+y e^{x}=x^{2} \]
2023-02-25Differentiate the following \[ \sqrt{\log \left(\sin \left(\frac{x^...
2023-02-25Find \( \frac{d y}{d x} \) when : \[ \sin y+\log y=x^{2}+18 x+3 \]
2023-02-25Differentiate the following \[ \log \left(\frac{1+x}{1-x}\right) \]
2023-02-25Differentiate the following \[ -\log \sin ^{-1}\left(2 x \sqrt{1-x^...
2023-02-25Differentiate the following \[ \log \tan \left(\frac{\pi}{4}+\frac{...
2023-02-25If \( A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right] \...
2023-02-25Units of viscosity of liquids is
2023-02-25Differentiate the following \[ \sqrt{x^{2}+1}-\log \left(\frac{1}{x...
2023-02-25Differentiate the following \[ \ln \left(\sqrt{\frac{1-\cos x}{1+\c...
2023-02-25The larger the molecular size should be value of \( b \)
2023-02-25Differentiate the following \[ 2 \ln \left(\frac{x-1}{x+1}\right) \]