Find the modulus, argument and the principal argument of the comple... VIDEO
Find the modulus, argument and the principal argument of the complex numbers.
\( \mathrm{P} \)
\[
6\left(\cos 310^{\circ}-i \sin 310^{\circ}\right)
\]
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/
Other Videos By PW Solutions 2023-02-25 Let \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) be three sets of compl... 2023-02-25 Let \( \mathrm{ABC} \) be a triangle such that \( \angle \mathrm{AC... 2023-02-25 If \( \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots ., \alpha_{... 2023-02-25 If \( Z_{r} ; r=1,2,3, \ldots, 50 \) are the roots of the equation ... 2023-02-25 Let \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) be three sets of compl... 2023-02-25 Among the complex numbers \( z \) satisfying the condition \( |z+3-... 2023-02-25 Intercept made by the circle \( \mathrm{z} \overline{\mathrm{z}}+\b... 2023-02-25 Let A, B, C be three sets of complex numbers as defined below.
\( \... 2023-02-25 Consider a complex number \( \mathrm{w}=\frac{\mathrm{z}-\mathrm{i}... 2023-02-25 Find all non-zero complex numbers \( Z \) satisfying \( \bar{Z}=i Z... 2023-02-25 Find the modulus, argument and the principal argument of the comple... 2023-02-25 Find the square root of :
(a) \( 9+40 \mathrm{i} \)
\( \mathrm{P} \)
W 2023-02-25 A"l the values of \( m \) for which both roots of the equation \( x... 2023-02-25 Statement-1: The digit in the unit place of \( 183 !+3^{183} \) is ... 2023-02-25 The statement \( P(n)=1 \times 1 !+2 \times 2 !+\ldots+n \times n !... 2023-02-25 For \( \mathrm{n} \in \mathrm{N}, \mathrm{a}^{2 \mathrm{n}-1}+\math... 2023-02-25 Statement-1: The digit in the unit place of \( 183 !+3^{183} \) is ... 2023-02-25 Statement-1 : The greatest positive integer which divides \( (\math... 2023-02-25 Statement-1: \( \mathrm{P}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}+1 ... 2023-02-25 \( \operatorname{Cos} A . \operatorname{Cos} 2 A . \operatorname{Co... 2023-02-25 If \( 10^{\mathrm{n}}+3.4^{\mathrm{n}+2}+\mathrm{K} \) is divisible...