For \( 0x\frac{\pi}{2} \), let \( P_{\mathrm{mn}}(x)=m \log _{\cos x}(\sin x)+n \log _{\cos x}(\...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=DD5Hf2_cByE
For \( 0x\frac{\pi}{2} \), let \( P_{\mathrm{mn}}(x)=m \log _{\cos x}(\sin x)+n \log _{\cos x}(\cot x) \); wherę \( m, n \in\{1,2, \ldots, 9\} \)
\( P \)
[For example :
W
\[
\begin{array}{l}
P_{29}(x)=2 \log _{\cos x}(\sin x)+9 \log _{\cos x}(\cot x) \text { and } \\
\left.P_{77}(x)=7 \log _{\cos x}(\sin x)+7 \log _{\cos x}(\cot x)\right]
\end{array}
\]
On the basis of above information , answer the following questions :
The mean proportional of numbers \( P_{49}\left(\frac{\pi}{4}\right) \) and \( P_{94}\left(\frac{\pi}{4}\right) \) is equal to
(a) 4
(b) 6
(c) 9
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live