For a real number \(\alpha\), if the system \(\begin{bmatrix}1 & \alpha & \alpha^{2}\\&n...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=QVyecnV9S8A
For a real number \(\alpha\), if the system \(\begin{bmatrix}1 & \alpha & \alpha^{2}\\ \alpha& 1 & \alpha \\\alpha^{2}& \alpha & 1\end{bmatrix} \begin{bmatrix}x\\ y\\ z\end{bmatrix} = \begin{bmatrix}1\\ -1\\ 1\end{bmatrix}\) of linear equations, has infinitely many solutions, then \(1 + \alpha + \alpha^{2} =\)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live