Two containers \( \mathrm{X} \& \mathrm{Y} \) are present with container \( \mathrm{X} \) co...
Two containers \( \mathrm{X} \& \mathrm{Y} \) are present with container \( \mathrm{X} \) consisting of some mass of math xmlns=http://www.w3.org/1998/Math/MathML class=wrs_chemistrymiHe/mi/math at some temperature while container \( Y \) having double the volume as that of container \( \mathrm{X} \) & kept at same temperature containing same mass of \( \mathrm{H}_{2} \) gas as the mass of Helium gas. Based on this data & the following conditions answer the question that follows
Assume sizes of \( \mathrm{H}_{2} \) molecule & math xmlns=http://www.w3.org/1998/Math/MathML class=wrs_chemistrymiHe/mi/math atom to be same \( \mathcal{\&} \) size of math xmlns=http://www.w3.org/1998/Math/MathML class=wrs_chemistrymi mathvariant=normalH/mi/math-atom to be half to that of math xmlns=http://www.w3.org/1998/Math/MathML class=wrs_chemistrymiHe/mi/math-atom & only bimolecular collisions to be occuring.
strongCondition I: /strongall except one atom of He are stationary in cont. \(\mathrm{X}\) \(\&\) all molecules of \(\mathrm{H}_{2}\) are moving in container \(\mathrm{Y}\).br /strongCondition II: /strongboth containers contain all moving molecules
Assuming condition II then ratio of total no. of collisions per unit volume per unit time in container \( X \) \& container \( \mathrm{Y} \) is (container \( \mathrm{X} \) : container \( \mathrm{Y} \) )
(A) \( 1: 1 \)
(B) \( \sqrt{2}: 1 \)
(C) \( 1: \sqrt{2} \)
(D) \( 4: 1 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live