For \( \alpha, \beta, \gamma, \theta \in \mathbf{R} \). Let \[ \mat...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=JTso-4SFtLc
For \( \alpha, \beta, \gamma, \theta \in \mathbf{R} \). Let
\[
\mathrm{A}_{\theta}(\alpha, \beta, \gamma)=\left|\begin{array}{lll}
\cos (\alpha+\theta) & \sin (\alpha+\theta) & 1 \\
\cos (\beta+\theta) & \sin (\beta+\theta) & 1 \\
\cos (\gamma+\theta) & \sin (\gamma+\theta) & 1
\end{array}\right|
\]
If \( \alpha, \beta, \gamma \) are fixed, then \( y=A_{x}(\alpha, \beta, \gamma) \) represents
(a) a straight line parallel to the \( \mathrm{x} \)-axis
(b) a straight line through the origin
(c) a parabola with vertex at the origin
(d) none of these
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw