For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... VIDEO
For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alpha \) for which
\[
\lim _{x \rightarrow 0} x^{\alpha} \frac{d^{2} y}{d x^{2}}=L \text { (not zero) }
\]
The value of \( L \) :
(a) \( \frac{1}{2} \)
(b) 1
(c) \( \frac{1}{2 \sqrt{2}} \)
(d) \( \frac{1}{2 \sqrt{3}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 If \( f(x)=\frac{(x-1)(x-2)}{(x-3)(x-4)} \), then number of local extremas for \( g(x) \), where... 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Let \( f(x)=\lim _{n \rightarrow \infty} n^{2} \tan \left(\ln \left(\sec \frac{x}{n}\right)\righ... 2022-10-28 If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x... 2022-10-28 The function \( f(x)=\left[\sqrt{1-\sqrt{1-x^{2}}}\right] \), (where [.] denotes greatest intege... 2022-10-28 If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \... 2022-10-28 If \( y=f(x) \) is differentiable \( \forall x \in R \), then
(a) \( y=|f(x)| \) is differentiab... 2022-10-28 For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... 2022-10-28 For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... 2022-10-28 If \( \lim _{x \rightarrow 0} \frac{a \cot x}{x}+\frac{b}{x^{2}}=\frac{1}{3} \), then \( b-a= \) 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 The number of integers in the range of function \( f(x)=[\sin x]+[\cos x]+[\sin x+\cos x] \) is ... 2022-10-28 \[
\lim _{x \rightarrow\left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos ^{-1}\left(2 x \sqrt{1-x^... 2022-10-28 The value of \( \lim _{n \rightarrow \infty} \cos ^{2}\left(\pi\left(\sqrt[3]{\left.\left.n^{3}+... 2022-10-28 Let \( f(x)=\frac{\cos ^{-1}(1-\{x\}) \sin ^{-1}(1-\{x\})}{\sqrt{2\{x\}}(1-\{x\})} \) where \( \... 2022-10-28 In the above problem, \( f(x) \) is injective in the interval \( x \in(-\infty, a] \), and \( \l...