If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x... VIDEO
If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x)) \) and \( \frac{1}{f(x)} \) are both continuous
(b) \( \tan (f(x)) \) and \( \frac{1}{f(x)} \) are both discontinuous
(c) \( \tan (f(x)) \) and \( f^{-1}(x) \) are both continuous
(d) \( \tan f(x) \) is continuous but \( f^{-1}(x) \) is not
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2022-10-28 Let \( f(x) \) be twice differentiable function such that \( f^{\prime \prime}(x)0 \) in \( [0,2... 2022-10-28 Let \( f:[-3,4] \rightarrow R \) such that \( f^{\prime \prime}(x)0 \) for all \( x \in[-3,4] \)... 2022-10-28 Let a function \( f(x)=[x]\{x\}-|x| \) where [.], \( \{\cdot\} \) are greatest integer and fract... 2022-10-28 Let \( f \) be a real valued function with \( (n+1) \) derivatives at each point of \( R \). For... 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 If \( f(x)=\frac{(x-1)(x-2)}{(x-3)(x-4)} \), then number of local extremas for \( g(x) \), where... 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Let \( f(x)=\lim _{n \rightarrow \infty} n^{2} \tan \left(\ln \left(\sec \frac{x}{n}\right)\righ... 2022-10-28 If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x... 2022-10-28 If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \... 2022-10-28 If \( y=f(x) \) is differentiable \( \forall x \in R \), then
(a) \( y=|f(x)| \) is differentiab... 2022-10-28 For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... 2022-10-28 For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... 2022-10-28 If \( \lim _{x \rightarrow 0} \frac{a \cot x}{x}+\frac{b}{x^{2}}=\frac{1}{3} \), then \( b-a= \) 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... 2022-10-28 The number of integers in the range of function \( f(x)=[\sin x]+[\cos x]+[\sin x+\cos x] \) is ... 2022-10-28 \[
\lim _{x \rightarrow\left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos ^{-1}\left(2 x \sqrt{1-x^...