If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \...
If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x ; 1x \leq 2\end{array} \quad\right. \) is differentiable in \( [0,2] \) then :
([.] denotes greatest integer function)
(a) \( a=\frac{1}{3} \)
(b) \( a=\frac{1}{6} \)
(c) \( b=\frac{\pi}{4}-\frac{13}{6} \)
(d) \( b=\frac{\pi}{4}-\frac{7}{3} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
2022-10-28 | Let a function \( f(x)=[x]\{x\}-|x| \) where [.], \( \{\cdot\} \) are greatest integer and fract... |
2022-10-28 | Let \( f \) be a real valued function with \( (n+1) \) derivatives at each point of \( R \). For... |
2022-10-28 | Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... |
2022-10-28 | If \( f(x)=\frac{(x-1)(x-2)}{(x-3)(x-4)} \), then number of local extremas for \( g(x) \), where... |
2022-10-28 | Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... |
2022-10-28 | Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... |
2022-10-28 | Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... |
2022-10-28 | Let \( f(x)=\lim _{n \rightarrow \infty} n^{2} \tan \left(\ln \left(\sec \frac{x}{n}\right)\righ... |
2022-10-28 | If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x... |
2022-10-28 | The function \( f(x)=\left[\sqrt{1-\sqrt{1-x^{2}}}\right] \), (where [.] denotes greatest intege... |
2022-10-28 | If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \... |
2022-10-28 | If \( y=f(x) \) is differentiable \( \forall x \in R \), then
(a) \( y=|f(x)| \) is differentiab... |
2022-10-28 | For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... |
2022-10-28 | For the curve \( \sin x+\sin y=1 \) lying in the first quadrant there exists a constant \( \alph... |
2022-10-28 | If \( \lim _{x \rightarrow 0} \frac{a \cot x}{x}+\frac{b}{x^{2}}=\frac{1}{3} \), then \( b-a= \) |
2022-10-28 | Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... |
2022-10-28 | Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... |
2022-10-28 | Consider the limit \( \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(\frac{1}{\sqrt{1+x}}-\frac{(1... |
2022-10-28 | The number of integers in the range of function \( f(x)=[\sin x]+[\cos x]+[\sin x+\cos x] \) is ... |
2022-10-28 | \[
\lim _{x \rightarrow\left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos ^{-1}\left(2 x \sqrt{1-x^... |
2022-10-28 | The value of \( \lim _{n \rightarrow \infty} \cos ^{2}\left(\pi\left(\sqrt[3]{\left.\left.n^{3}+... |