Four particles are moving with different velocities in front of a stationary plane mirror (lying....
Four particles are moving with different velocities in front of a stationary plane mirror (lying in \( y \)-z plane). At \( t=0 \), velocity of \( A \) is \( \vec{v}_{A}=\hat{i} \), velocity of \( B \) is \( \vec{v}_{B}=-\hat{i}+3 \hat{j} \), velocity of \( C \) is \( \vec{v}_{C}=5 \hat{i}+6 \hat{j} \), velocity of \( D \) is \( \vec{v}_{D}=3 \hat{i}-\hat{j} \), Acceleration of particle \( A \) is \( \vec{a}_{A}=2 \hat{i}+\hat{j} \) and acceleration of particle \( C \) is \( \vec{a}_{C}=2 t \hat{j} \). The particles \( B \) and \( D \) move with uniform velocity (Assume no collision to take place till \( t=2 \) seconds). All quantities are in S.I. units. Relative velocity of image of object \( A \) with respect to object \( A \) is denoted by \( \vec{v}_{A, A} \). Velocities of images relative to corresponding object are given in column I and their values are given in column II at \( t=2 \) second. Match column I with corresponding values in column II.
\begin{tabular}{|c|c|c|c|}
\hline & Column I & & Column II \\
\hline A. & \( \vec{V}_{A A} \) & P. & \( 2 \hat{i} \) \\
\hline B. & \( \vec{V}_{B_{i}^{\prime} B} \) & Q. & \( -6 \hat{i} \) \\
\hline C. & \( \vec{V}_{c_{c}^{\prime}} \) & R. & \( -12 \hat{i}+4 \hat{j} \) \\
\hline D. & \( \vec{V}_{D^{\prime}, D} \) & S. & \( -10 \hat{i} \) \\
\hline & B & C & D \\
\hline (1) & P & & Q \\
\hline (2) & Q & & Q \\
\hline (3) & \( \mathrm{R} \) & \( s \) & \( P \) \\
\hline (4) & Q & R & S \\
\hline
\end{tabular}
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live