If \( a_{0}, a_{1}, a_{2}, \ldots a_{n} \) is an arithmetic progres...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=I3tH0hE__qA
If \( a_{0}, a_{1}, a_{2}, \ldots a_{n} \) is an arithmetic progression of positive integers, then to evaluate
\( \frac{C_{0}}{a_{0}} \pm \frac{C_{1}}{a_{1}}+\frac{C_{2}}{a_{2}} \pm \cdots \) upto \( (n+1) \) terms, we integrate both the sides of
\[
\sum_{r=0}^{n} C_{r} x^{r}=(1+x)^{n}
\]
after multiplying by \( x^{r} \) for an appropriate value of \( r \).
\( -C_{1}-\frac{1}{2} C_{2}+\frac{1}{3} C_{3}-\cdots \) upto \( n \) terms equals
(a) \( \frac{1}{n} \)
(b) \( \sum_{k=1}^{n} \frac{1}{k} \)
(c) 1
(d) 0
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw