If a current loop of radius \( R \) carrying a anti-clockwise curre...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=bqBmuedfbao
If a current loop of radius \( R \) carrying a anti-clockwise current \( I \) is placed in a plane parallel to \( Y Z \)-plane, then magnetic field at a point on the axis of the loop is given by
(a) \( \mathbf{B}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{\mathbf{j}} \)
(b) \( \mathbf{B}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{\mathbf{k}} \)
(c) \( \mathbf{B}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{\mathbf{i}} \)
(d) \( \mathbf{B}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}}(\hat{\mathbf{i}} \times \hat{\mathbf{k}}) \)
W)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw