If a is A symmetric matrix and \( \mathrm{B} \) is a skew-symmetrix...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=lW9jYFJCS4Y
If a is A symmetric matrix and \( \mathrm{B} \) is a skew-symmetrix matrix
P such that \( \mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}2 & 3 \\ 5 & -1\end{array}\right] \), then \( \mathrm{AB} \) is equal to :
W
(a) \( \left[\begin{array}{cc}-4 & 2 \\ 1 & 4\end{array}\right] \)
(b) \( \left[\begin{array}{cc}-4 & -2 \\ -1 & 4\end{array}\right] \)
(c) \( \left[\begin{array}{cc}4 & -2 \\ -1 & -4\end{array}\right] \)
(d) \( \left[\begin{array}{rr}4 & -2 \\ 1 & -4\end{array}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw