If a variable chord of the hyperbola \( x^{2}-y^{2}=9 \) touches the parabola \( y^{2}=12 x \), ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=eZtXxF2hI4A
If a variable chord of the hyperbola \( x^{2}-y^{2}=9 \) touches the parabola \( y^{2}=12 x \), then locus of middle points of these chords is expressed as \( x^{3}+\lambda_{1} x y^{2}+\lambda_{2} y^{2}=0\left(\lambda_{1}, \lambda_{2} \in \mathrm{I}\right) \), then:
(a) \( \lambda_{1}+\lambda_{2}=2 \)
(b) \( \lambda_{1}^{2}+\lambda_{2}^{2}=10 \)
(c) Number of divisors of \( \left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) \) is 4
(d) Number of divisors of \( \left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) \) is 6
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live