If \( \alpha, \beta \) be the roots of the equation \( u^{2}-2 u+2=0 \) and if cot \( \theta=x+1... VIDEO
If \( \alpha, \beta \) be the roots of the equation \( u^{2}-2 u+2=0 \) and if cot \( \theta=x+1 \), then \( \left[(x+\alpha)^{n}-(x+\beta)^{n}\right] /[\alpha-\beta] \) is equal to
(a) \( \frac{\sin n \theta}{\sin ^{n} \theta} \)
(b) \( \frac{\cos n \theta}{\cos ^{n} \theta} \)
(c) \( \frac{\sin n \theta}{\cos ^{n} \theta} \)
(d) \( \frac{\cos n \theta}{\sin ^{n} \theta} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-07-03 If \( z_{1}, z_{2}, z_{3}, z_{4} \) are root of the equation \( \mathrm{a}_{0} \mathrm{z}^{4}+a_... 2023-07-03 If \( z \) is a complex number then the equation \( z^{2}+\mathrm{z}|z| \) \( +\left|z^{2}\right... 2023-07-03 Consider \( a z^{2}+b z+c=0 \), where \( a, b, c \in R \) and \( 4 a cb^{2} \). If \( z_{1} \) a... 2023-07-03 Use complex numbers to find the sum \( \sum_{r=0}^{n-1} \cos ^{2}\left(\alpha+\frac{r \pi}{n}\ri... 2023-07-03 Let \( \alpha+\mathrm{i} \beta ; \alpha, \beta \in \mathrm{R} \), be a root of the equation \( \... 2023-07-03 The \( \mathrm{z}^{10}+(13 \mathrm{z}-1)^{10}=0 \) has 10 complex roots \( z_{1}, \bar{z}_{1}, z... 2023-07-03 Let a,b,c be distinct complex numbers such that \( \frac{a}{1-b}=\frac{b}{1-c}=\frac{c}{1-a}=k \... 2023-07-03 Let \( z_{1} \) and \( z_{2} \) be complex numbers such that \( z_{1} \neq z_{2} \) and \( \left... 2023-07-03 Let \( z_{1}, z_{2}, z_{3} \) be three points on \( |z|=1 \) Let \( \theta_{1} \theta_{2} \), an... 2023-07-03 If \( p \) and \( q \) are distinct prime numbers, then the number of distinct imaginary num... 2023-07-03 If \( \alpha, \beta \) be the roots of the equation \( u^{2}-2 u+2=0 \) and if cot \( \theta=x+1... 2023-07-03 If \( \arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2} \) and \( \left|... 2023-07-03 If \( z \) is any complex number satisfying \( |z-k|=k \), where \( k \) is positive real number... 2023-07-03 For how many positive integers \( n \) less than or equal to 1000 is \( (\sin t+i \cos t)^{n}=... 2023-07-03 \( \operatorname{Sin}^{-1}\left[\frac{(z-1)}{i}\right], z \) is non real, can be the angle of tr... 2023-07-03 If \( z=x+i y(x, y \in R, x \neq-1 / 2) \), the number of values of \( z \) satisfying \( |z|^{\... 2023-07-03 Let \( F(z)=\frac{z+i}{z-i} \) for all complex numbers \( z \neq i \) and \( z_{n}= \) \( F\left... 2023-07-03 Let \( p=x+y+z+a(y+z-2 x) \)
\[
\begin{array}{l}
q=x+y+z+a(z+x-2 y) \\
r=x+y+z+a(x+y-2 z)
\end{a... 2023-07-03 Let \( p=x+y+z+a(y+z-2 x) \)
\[
\begin{array}{l}
q=x+y+z+a(z+x-2 y) \\
r=x+y+z+a(x+y-2 z)
\end{a... 2023-07-03 Let \( z \) represents complex number satisfying \( |z-2|=1 \), then
(a) Least value of \( \arg ... 2023-07-03 Dividing \( f(z) \) by \( z-i \), we obtain the remainder \( 1-i \) and dividing it by \( z+i \)...