If circle \( x^{2}+y^{2}=1 \) cuts the rectangular hyperbola \( x y=1 \) in four points \( \left....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=60YqCLaheW0
If circle \( x^{2}+y^{2}=1 \) cuts the rectangular hyperbola
\( \mathrm{P} \)
\( x y=1 \) in four points \( \left(x_{\mathrm{i}}, y_{\mathrm{i}}\right): i=1,2,3,4 \) then
W
(1) \( x_{1} x_{2} x_{3} x_{4}=-1 \)
(2) \( y_{1} y_{2} y_{3} y_{4}=1 \)
(3) \( x_{1}+x_{2}+x_{3}+x_{4}=0 \)
(4) \( y_{1}+y_{2}+y_{3}+y_{4}=0 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live