The asymptotes of the hyperbola \( \frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}}=1 \) and \( \....
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=a4-JOQWv1vE
The asymptotes of the hyperbola \( \frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}}=1 \) and
\( \mathrm{P} \)
\( \frac{x^{2}}{a_{2}^{2}}-\frac{y^{2}}{b_{2}^{2}}=1 \) are perpendicular to each other. Then,
(1) \( \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \)
(2) \( a_{1} a_{2}=b_{1} b_{2} \)
(3) \( a_{1} a_{2}+b_{1} b_{2}=0 \)
(4) \( a_{1}-a_{2}=b_{1}-b_{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live