If \( f:[0, \pi / 2] \rightarrow[0,1] \) be a differentiable function such that \( f(0)=0 \) and...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=IGC8yOzRI0g
If \( f:[0, \pi / 2] \rightarrow[0,1] \) be a differentiable function such that \( f(0)=0 \) and \( f(\pi / 2)=1 \) then show that:
(a) \( f(\alpha) \cdot f^{\prime}(\alpha)=\frac{1}{\pi} \) for atleast one \( \alpha \in\left(0, \frac{\pi}{2}\right) \)
(b) \( \exists \) atleast one \( \alpha \in\left(0, \frac{\pi}{2}\right) \) such that \( f^{\prime}(\alpha)=\frac{8 a}{\pi^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live