Let a function \( f(x)=[x]\{x\}-|x| \) where [.], \( \{\cdot\} \) are greatest integer and fract... VIDEO
Let a function \( f(x)=[x]\{x\}-|x| \) where [.], \( \{\cdot\} \) are greatest integer and fractional part respectively then match the following List-I with List-II.
(C) If \( g(x)=x-1 \) and if \( f(x)=g(x) \) where (R) \( x \in(-3, \infty) \), then number of solutions
(D) If \( l=\lim _{x \rightarrow 4^{+}} f(x) \), then \( -l \) is equal to
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2022-10-28 An acid-base indicator which is a weak acid has a \( p K_{a} \) value \( =5.45 \). At what conce... 2022-10-28 An acid-base indicator has \( K_{\mathrm{HIn}}=3.0 \times 10^{-5} \). The acid form of the indic... 2022-10-28 In which of the following cases is the solution of \( \mathrm{AgCl} \) unsaturated?
(a) \( \left... 2022-10-28 If \( (f(x)-1)\left(x^{2}+x+1\right)^{2}-(f(x)+1)\left(x^{4}+x^{2}+1\right)=0 \)
\( \forall x \i... 2022-10-28 Let \( f(x)=1+\int_{0}^{1}\left(x e^{y}+y e^{x}\right) f(y) d y \) where \( x \) and \( y \) are... 2022-10-28 Common tangent(s) to \( y=x^{3} \) and \( x=y^{3} \) is/are :
(a) \( x-y=\frac{1}{\sqrt{3}} \)
(... 2022-10-28 For the equation \( \frac{e^{-x}}{1+x}=\lambda \) which of the following statement(s) is/are cor... 2022-10-28 Consider \( f(x)=\sin ^{5} x+\cos ^{5} x-1, x \in\left[0, \frac{\pi}{2}\right] \), which of the ... 2022-10-28 Let \( f(x) \) be twice differentiable function such that \( f^{\prime \prime}(x)0 \) in \( [0,2... 2022-10-28 Let \( f:[-3,4] \rightarrow R \) such that \( f^{\prime \prime}(x)0 \) for all \( x \in[-3,4] \)... 2022-10-28 Let a function \( f(x)=[x]\{x\}-|x| \) where [.], \( \{\cdot\} \) are greatest integer and fract... 2022-10-28 Let \( f \) be a real valued function with \( (n+1) \) derivatives at each point of \( R \). For... 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 If \( f(x)=\frac{(x-1)(x-2)}{(x-3)(x-4)} \), then number of local extremas for \( g(x) \), where... 2022-10-28 Let \( f(x)=\left\{\begin{array}{cc}x[x] & 0 \leq x2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\ri... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Define : \( f(x)=\left|x^{2}-4 x+3\right| \ln x+2(x-2)^{1 / 3}, x0 \)
\[
h(x)=\left\{\begin{arra... 2022-10-28 Let \( f(x)=\lim _{n \rightarrow \infty} n^{2} \tan \left(\ln \left(\sec \frac{x}{n}\right)\righ... 2022-10-28 If \( f(x)=\left(\frac{x}{2}\right)-1 \), then on the interval \( [0, \pi] \) :
(a) \( \tan (f(x... 2022-10-28 The function \( f(x)=\left[\sqrt{1-\sqrt{1-x^{2}}}\right] \), (where [.] denotes greatest intege... 2022-10-28 If \( f(x)=\left[\begin{array}{l}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b ; 0 \...