If \( I_{n}=\int(\sin x)^{n} d x n \in N \), Then \( 5 I_{4}-6 I_{6...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=haNck4PXlEg
If \( I_{n}=\int(\sin x)^{n} d x n \in N \), Then \( 5 I_{4}-6 I_{6} \) is
\( \mathrm{P} \) equal to:
W
(1) \( \sin x \cdot(\cos x)^{5}+C \)
(2) \( \sin 2 x \cdot \cos 2 x+C \)
(3) \( \frac{\sin 2 x}{8}\left[\cos ^{2} 2 x+1-2 \cos 2 x\right]+C \)
(4) \( \frac{\sin 2 x}{8}\left[\cos ^{2} 2 x+1+2 \cos 2 x\right]+C \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw