The integral \( \int \sqrt{\cot x} e^{\sqrt{\sin x}} \sqrt{\cos x} ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=QsI50QJfyts
The integral \( \int \sqrt{\cot x} e^{\sqrt{\sin x}} \sqrt{\cos x} d x \) equals:
\( \mathrm{P}^{12 i} \)
(1) \( \frac{\sqrt{\tan x} e^{\sqrt{\sin x}}}{\sqrt{\cos x}}+C \)
W
(2) \( 2 e^{\sqrt{\sin x}}+C \)
(3) \( -\frac{1}{2} e^{\sqrt{\sin x}}+C \)
(4) \( \frac{\sqrt{\cot x} e^{\sqrt{\sin x}}}{2 \sqrt{\cos x}}+C \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw