If \( \lim _{a \rightarrow \infty} \frac{1}{a} \int_{0}^{\infty} \f...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=bECPNLeXiuI
If \( \lim _{a \rightarrow \infty} \frac{1}{a} \int_{0}^{\infty} \frac{x^{2}+a x+1}{1+x^{4}} \cdot \tan ^{-1}\left(\frac{1}{x}\right) d x \) equal to \( \frac{\pi^{2}}{k} \)
\( \mathrm{P}^{17} \)
WV where \( k \in N \), then \( k \) equals to
(1) 4
(2) 8
\( (3)^{1} \quad 16 \)
(4) 32
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw