If \( \mathrm{z} \in C \), then the locus of \( z \) on an Argand diagram is
\begin{tabular}{|l|...
If \( \mathrm{z} \in C \), then the locus of \( z \) on an Argand diagram is
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline A. & \( |z-2-i|=|z| \mid \sin \left(\frac{\pi}{4}-\arg z\right) \) & p. & \( \begin{array}{l}\text { a pair of straight } \\
\text { lines }\end{array} \) \\
\hline B. & \( (z-3+i)(\bar{z}-3-i)=5 \) & q. & circle \\
\hline
\end{tabular}
\begin{tabular}{|l|l|} \hline C. & \( 3|z-2+i| \) \\ \hline D. & \( |z-3|=2 \) \\ \hline \end{tabular}
(a) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{t} ; \mathrm{D} \rightarrow \mathrm{s} \)
(b) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{q} \); D \( \rightarrow \) q
(c) \( \mathrm{A} \rightarrow \mathrm{q} \); B \( \rightarrow \) t; C \( \rightarrow \) p; D \( \rightarrow \mathrm{r} \)
(d) \( \mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-07-03 | If \( P \) is a point on the Aragand diagram. On the circle with \( O P \) as diameter two point... |
2023-07-03 | \( z_{1}, z_{2} \) and \( z_{3} \) are three non-zero complex numbers such that \( z_{1} \neq z_... |
2023-07-03 | If \( z_{1} \) and \( z_{2} \) are two complex number and if \( \arg \frac{z_{1}+z_{2}}{z_{1}-z_... |
2023-07-03 | Let \( A \equiv z_{1} ; B \equiv z_{2} ; C \equiv z_{3} \) are three complex numbers denoting th... |
2023-07-03 | Let \( z_{1}, z_{2}, z_{3} \) are three pair wise distinct complex numbers and \( t_{1}, t_{2}, ... |
2023-07-03 | Given, \( z=\cos \frac{2 \pi}{2 n+1}+i \sin \frac{2 \pi}{2 n+1} \), \( n \) a positive integer... |
2023-07-03 | The points \( A, B, C \) represent the complex numbers \( z_{1}, z_{2}, z_{3} \) respectively on... |
2023-07-03 | A particle starts to travel from a point \( P \) on the curve \( C_{1} \) : \( |z-3-4 i|=5 \), w... |
2023-07-03 | \( \omega_{1}, \omega_{2}, \ldots, \omega_{n} \) be complex numbers. A line \( L \) in the argan... |
2023-07-03 | If \( \omega \) is the imaginary cube root of unity, then find the number of pairs of integers \... |
2023-07-03 | If \( \mathrm{z} \in C \), then the locus of \( z \) on an Argand diagram is
\begin{tabular}{|l|... |
2023-07-03 | If \( \mathrm{z} \in C \), then the locus of \( z \) on an Argand diagram is
\begin{tabular}{|l|... |
2023-07-03 | Assume that \( A_{\mathrm{i}}(i=1,2, \ldots, n) \) are the vertices of a regular polygon inscrib... |
2023-07-03 | If \( z \) is a complex number and the minimum value of \( |z|+|z-1| \) \( +|2 z-3| \) is \( \la... |
2023-07-03 | If \( z_{1}, z_{2}, z_{3} \) be vertices of an isosceles \( \Delta \) right angled at \( z_{3} \... |
2023-07-03 | Let \( z_{1}, z_{2}, \ldots, z_{n} \) be in G.P with first term as unity such that \( z_{1}+z_{2... |
2023-07-03 | Comprehension \( \quad \) In an argand plane \( z_{1}, z_{2} \) and \( z_{3} \) are resepectivel... |
2023-07-03 | Each of the circles \( |z-1-i| \) and \( |z-1+i|=1 \) touches internally a circle of radius 2 . ... |
2023-07-03 | Comprehension.
A regular heptagon (seven sides)
is inscribed in a circle of radius 1 . Let \( A_... |
2023-07-03 | Comprehension.
A regular heptagon (seven sides)
is inscribed in a circle of radius 1 . Let \( A_... |
2023-07-03 | Comprehension.
A regular heptagon (seven sides)
is inscribed in a circle of radius 1 . Let \( A_... |