If \( \omega(\neq 1) \) is a cube root of unity, then \( \left(1-\omega+\omega^{2}\right)\left(1...
If \( \omega(\neq 1) \) is a cube root of unity, then \( \left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right) \ldots \) upto \( 2 n \) factors, is
(a) \( 2^{n} \)
(b) \( 2^{2 n} \)
(c) 0
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2022-10-27 | If \( \theta \in R \) and \( i=\sqrt{-1} \), then \( \left(\frac{1+\sin \theta+i \cos \theta}{1+... |
2022-10-27 | The wavelength of the energy emitted when electron comes from fourth orbit to second orbit in hy... |
2022-10-27 | An electron in hydrogen atom makes a transition \( n_{1} \rightarrow n_{2} \) where \( n_{1} \) ... |
2022-10-27 | Which of the following transitions will have highest emission wavelength
[BHU 2003]
(a) \( n=2 \... |
2022-10-27 | Consider the hyperbola \( H: x^{2}-y^{2}=1 \) and a circle \( S \) with centre \( N\left(x_{2}, ... |
2022-10-27 | If \( i z^{4}+1=0 \), where \( i=\sqrt{-1} \), then \( z \) can take the value
(a) \( \frac{1+i}... |
2022-10-27 | If \( \alpha, \beta \) and \( \gamma \) are the cube roots of \( p(p0) \), then for any \( x, y ... |
2022-10-27 | The number of solutions of the equation \( z^{2}+\bar{z}=0 \), is (a) 1 (b) 2 (c) 3 |
2022-10-27 | The frequency of \( 1^{\text {st }} \) line of Balmer series in \( \mathrm{H}_{2} \) atom is \( ... |
2022-10-27 | \( v_{1} \) is the frequency of the series limit of Lyman series, \( v_{2} \) is the frequency o... |
2022-10-27 | If \( \omega(\neq 1) \) is a cube root of unity, then \( \left(1-\omega+\omega^{2}\right)\left(1... |
2022-10-27 | The solution of the equation \( |z|-z=1+2 i \), where \( i=\sqrt{-1} \), is
(a) \( 2-\frac{3}{2}... |
2022-10-27 | The real part of \( (1-i)^{-i} \), where \( i=\sqrt{-1} \) is
(a) \( e^{-\pi / 4} \cos \left(\fr... |
2022-10-27 | \( \frac{\sqrt{(5+12 i)}+\sqrt{(5-12 i)}}{\sqrt{(5+12 i)}-\sqrt{(5-12 i)}} \) is equal to (where... |
2022-10-27 | If \( z=i \log _{e}(2-\sqrt{3}) \), where \( i=\sqrt{-1} \), then the \( \cos z \) is equal to
(... |
2022-10-27 | If \( \left|z_{1}\right|=\left|z_{2}\right| \) and \( \operatorname{amp}\left(z_{1}\right)+\oper... |
2022-10-27 | The principal value of \( \arg (z) \), where \( z=\left(1+\cos \frac{8 \pi}{5}\right)+i \sin \fr... |
2022-10-27 | The amplitude of \( e^{e^{-\theta}} \), where \( \theta \in R \) and \( i=\sqrt{-1} \) is
(a) \(... |
2022-10-27 | If \( z=i^{i^{i}} \), where \( i=\sqrt{-1} \), then \( |z| \) is equal to
(a) 1
(b) \( e^{-\pi /... |
2022-10-27 | If \( \left|z_{1}\right|=2,\left|z_{2}\right|=3,\left|z_{3}\right|=4 \) and \( \left|z_{1}+z_{2}... |
2022-10-27 | If \( \alpha \) and \( \beta \) are two different complex numbers with \( |\beta|=1 \), then \( ... |