If the tangent at point \( P(h, k) \) on the hyperbola \( \mathrm{P...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=CzKf_eaZoHg
If the tangent at point \( P(h, k) \) on the hyperbola
\( \mathrm{P}^{17: 0} \) \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \) cuts the circle \( x^{2}+y^{2}=a^{2} \) at points \( Q \)
W \( \left(x_{1}, y_{1}\right) \) and \( R\left(x_{2}, y_{2}\right) \), then the value of \( \frac{1}{y_{1}}+\frac{1}{y_{2}} \) is
(1) \( 1 / k \)
(2) \( 2 / k \)
(3) \( a b / k \)
(4) \( a+b / k \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw