The tangent at a point \( P \) on the hyperbola \( \mathrm{P}^{16: ...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=yJM-kfE3CCc
The tangent at a point \( P \) on the hyperbola
\( \mathrm{P}^{16: 4} \) \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \) meets one of the directrix at \( F \). If \( P F \)
W
subtends an angle \( \theta \) at the corresponding focus, then
\( \theta= \)
(1) \( \pi / 4 \)
(2) \( \pi / 2 \)
(3) \( 3 \pi / 4 \)
(4) \( \pi \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw