If the two adjacent sides of two rectangles are represented by vectors \( \vec{p}=5 \vec{a}-3 \vec{b} \);
\( \mathrm{P} \) \( \vec{q}=-\vec{a}-2 \vec{b} \) and \( \vec{r}=-4 \overrightarrow{ }-\vec{b} ; \vec{s}=-\vec{a}+\vec{b} \), respectively, then the angle between the vectors \( \vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s}) \) and \( \vec{y}=\frac{1}{5}(\vec{r}+\vec{s}) \) is
(1) \( -\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right) \)
(2) \( \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right) \)
(3) \( \pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right) \)
(4) cannot be evaluated
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live