If \( \theta_{1} \& \theta_{2} \) are the parameters of the extremi...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=laeOT5IHnR8
If \( \theta_{1} \& \theta_{2} \) are the parameters of the extremities of a chord through \( (a e, 0) \) of a hyperbola
\[
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text {, then show that } \tan \frac{\theta}{2} \cdot \tan \frac{\theta}{2}+\frac{e-1}{e+1}=0 \text {. }
\]
P
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw