If \( \theta \) is a positive acute angle then
P
(a) \( \tan \theta... VIDEO
If \( \theta \) is a positive acute angle then
P
(a) \( \tan \theta\theta\sin \theta \)
(b) \( \theta\sin \theta\tan \theta \)
(c) \( \sin \theta\tan \theta\theta \)
(d) none of these
W
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions 2023-03-21 If \( f(x)=\int_{x}^{x^{2}} \frac{d t}{(\log t)^{2}}, x \neq 0, x \... 2023-03-21 The value of \( \int_{0}^{\pi} \frac{\sin n x}{\sin x} d x, n \in N... 2023-03-21 If \( \phi(x)=\int_{x}^{x^{2}}(t-1) d t, 1 \leq x \leq 2 \), then t... 2023-03-21 Let \( f(x) \) be a function defined by \( f(x)=\int_{1}^{x} x\left... 2023-03-21 If \( \int_{0}^{1}\left(1+\sin ^{4} x\right)\left(a x^{2}+b x+c\rig... 2023-03-21 \( \lim _{n \rightarrow \infty}\left\{\frac{n !}{(k n)^{n}}\right\}... 2023-03-21 \( \int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x \) is equal to
\( \mathr... 2023-03-21 Let \( f(x)=-2 x^{3}+21 x^{2}-60 x+41 \). Then
P
W
(a) \( f(x) \) i... 2023-03-21 Let \( f(x)=\frac{x^{2}+1}{[x]}, 1 \leq x \leq 3.9 \). [.] denote t... 2023-03-21 Let \( \int_{a}^{b} f(x) d x=p \) and \( \int_{a}^{b} \mid f(x) d x... 2023-03-21 If \( \theta \) is a positive acute angle then
P
(a) \( \tan \theta... 2023-03-21 If \( f(x)=\frac{x}{\sin x} \) and \( g(x)=\frac{x}{\tan x} \), whe... 2023-03-21 Let \( f(x)=a x^{3}+b x^{2}+c x+1 \) have extrema at \( x=\alpha, \... 2023-03-21 Let \( f(x)=[n+p \sin x], x \in(0, \pi), n \in Z, p \) is a prime n... 2023-03-21 Let \( f(x)=x^{3}-6 x^{2}+12 x-3 \). Then at \( x=2, f(x) \) has
P
... 2023-03-21 Let \( f(x)=\left[x^{2}\right]-[x]^{2} \), where [.] denotes the gr... 2023-03-21 Let \( h(x)=\min \left\{x, x^{2}\right\} \) for every real number \... 2023-03-21 Let \( f(x) \) be a function such that \( f^{\prime}(a) \neq 0 \). ... 2023-03-21 If \( f(x)=|\cos 2 x| \) then \( f^{\prime}\left(\frac{\pi}{4}+0\ri... 2023-03-21 If \( (x)=\sin \pi[x] \) then \( f^{\prime}(1-0) \) is equal to
\( ... 2023-03-21 If \( \lim _{n \rightarrow \infty}\left(\operatorname{an}-\frac{1+n...