\( \int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x \) is equal to
\( \mathr...
\( \int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x \) is equal to
\( \mathrm{P} \)
W
(a) \( \pi+1 \)
(b) \( 1+\pi / 2 \)
(c) \( \pi+3 / 2 \)
(d) none of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-03-21 | The area of the portion enclosed by the curve \( \sqrt{x}+\sqrt{y}=... |
2023-03-21 | The order the differential equation \( \frac{d^{2} y}{d x^{2}}-\lef... |
2023-03-21 | Let \( f(x)=a x^{3}+b x^{2}+c x \) have relative extrema \( x=1 \) ... |
2023-03-21 | Let \( f(x)=\int_{0}^{x}|x-1| d x, x \geq 0 \). Then \( f^{\prime}(... |
2023-03-21 | If \( f(x)=\int_{x}^{x^{2}} \frac{d t}{(\log t)^{2}}, x \neq 0, x \... |
2023-03-21 | The value of \( \int_{0}^{\pi} \frac{\sin n x}{\sin x} d x, n \in N... |
2023-03-21 | If \( \phi(x)=\int_{x}^{x^{2}}(t-1) d t, 1 \leq x \leq 2 \), then t... |
2023-03-21 | Let \( f(x) \) be a function defined by \( f(x)=\int_{1}^{x} x\left... |
2023-03-21 | If \( \int_{0}^{1}\left(1+\sin ^{4} x\right)\left(a x^{2}+b x+c\rig... |
2023-03-21 | \( \lim _{n \rightarrow \infty}\left\{\frac{n !}{(k n)^{n}}\right\}... |
2023-03-21 | \( \int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x \) is equal to
\( \mathr... |
2023-03-21 | Let \( f(x)=-2 x^{3}+21 x^{2}-60 x+41 \). Then
P
W
(a) \( f(x) \) i... |
2023-03-21 | Let \( f(x)=\frac{x^{2}+1}{[x]}, 1 \leq x \leq 3.9 \). [.] denote t... |
2023-03-21 | Let \( \int_{a}^{b} f(x) d x=p \) and \( \int_{a}^{b} \mid f(x) d x... |
2023-03-21 | If \( \theta \) is a positive acute angle then
P
(a) \( \tan \theta... |
2023-03-21 | If \( f(x)=\frac{x}{\sin x} \) and \( g(x)=\frac{x}{\tan x} \), whe... |
2023-03-21 | Let \( f(x)=a x^{3}+b x^{2}+c x+1 \) have extrema at \( x=\alpha, \... |
2023-03-21 | Let \( f(x)=[n+p \sin x], x \in(0, \pi), n \in Z, p \) is a prime n... |
2023-03-21 | Let \( f(x)=x^{3}-6 x^{2}+12 x-3 \). Then at \( x=2, f(x) \) has
P
... |
2023-03-21 | Let \( f(x)=\left[x^{2}\right]-[x]^{2} \), where [.] denotes the gr... |
2023-03-21 | Let \( h(x)=\min \left\{x, x^{2}\right\} \) for every real number \... |