Improving Packet Delivery Efficiency Using Multi-Radio Diversity in Wireless LANs

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=jhnbkXzDL90



Duration: 1:04:58
38 views
0


Data transmissions in Wireless Local Area Networks (WLANs) often suffer from corruptions that arise from the notoriously complex and time-varying signal propagation characteristics of the wireless medium. A number of physical factors such as attenuation and multi-path are particularly prevalent indoors and can lead to high bit-error rates at the link-layer. These in turn lead to packet losses, low throughput, and higher and more variable packet latencies observed at higher layers, impacting the performance of many delay-sensitive and traffic-intensive wireless applications such as games, file-sharing, voice-over-IP, and streaming video. We use the notion of path diversity to develop an approach that improves data delivery efficiency and throughput in presence of transmission errors. Path diversity relies on multiple access points (APs) covering a given area or multiple radios on the user's device or a combination of both. The hypothesis underlying this system is as follows: because frame errors are often path-dependent (e.g., due to multi-path fading), location-dependent (e.g., due to noise), and statistically independent between different transmitting radios, transmissions are likely to succeed from at least one of the available transmitters (transmit diversity). Likewise, multiple radios that all receive versions of the same transmission may together be able to correctly recover a frame, even when any given individual radio is not (receive diversity). Using these principles, we design and implement the Multi-Radio Diversity (MRD) system, which leverages the properties of path diversity at the transmitter and receiver to reduce frame loss rates in the link-layer, leading to increased throughput and packet delivery efficiency. We introduce several techniques that make path selection, retransmission, and rate adaptation work efficiently in a MRD system based on the 802.11 MAC. We used commodity PCs and wireless interfaces to build a MRD system and conducted a wide range of indoor experiments. Our experiments measured throughput gains up to 3.0X over conventional schemes without consuming much extra wireless bandwidth.




Other Videos By Microsoft Research


2016-09-06Capacity and Fairness Issues in Enterprise-class Wireless Mesh Networks
2016-09-06Towards Accurate Internet Distance Prediction
2016-09-06Guanxi (The Art of Relationships) : Microsoft, China, and Bill Gates's Plan to Win the Road Ahead
2016-09-06Increasing Concurrency using EDGE Architectures
2016-09-06Decision Procedures for Recursive Data Structures with Integer Arithmetic
2016-09-06Supporting Construction, Analysis, and Understanding of Software Models.
2016-09-06Program Verification via Three-Valued Logic Analysis
2016-09-06Efficient Data Dissemination in Bandwidth-Asymmetric P2P Networks
2016-09-06Tractable Learning of Structured Prediction Models
2016-09-06Future Hype: The Myths of Technology Change
2016-09-06Improving Packet Delivery Efficiency Using Multi-Radio Diversity in Wireless LANs
2016-09-06Algorithmic Foundations of P2P and Wireless Networks
2016-09-06Semi-unsupervised learning of taxonomic and non-taxonomic relationships from the web
2016-09-06The Weather Makers: How Man is Changing the Climate and What it Means for Life on Earth
2016-09-06Touched with Light: Scanned beams display or capture information at video rates
2016-09-06Internet Background Radiation
2016-09-06Understanding and Improving Wireless Networks
2016-09-06SAFECode: A Platform for Developing Reliable Software in Unsafe Languages
2016-09-06Enabling Internet Malware Investigation and Defense Using Virtualization
2016-09-06Cohomology in Grothendieck Topologies and Lower Bounds in Boolean Complexity
2016-09-06Approximate inference techniques for optimal design in self-assembly and automated programming



Tags:
microsoft research