In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors o...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=UUqt9BLWY6Q
In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors of \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \) intersect each other at \( \mathrm{O} \). Join \( \mathrm{A} \) to \( \mathrm{O} \). Show that :
(i) \( \mathrm{OB}=\mathrm{OC} \)
(ii) \( \mathrm{AO} \) bisects \( \angle \mathrm{A} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live