अवकल समीकरण \( \left(y^{2} d x-2 x y d y\right)=x^{3} y^{3} d y+x^{2} y^{4} d x \) का हल है (A) ...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=yejGMfKAvO0
अवकल समीकरण \( \left(y^{2} d x-2 x y d y\right)=x^{3} y^{3} d y+x^{2} y^{4} d x \) का हल है
(A) \( \log \left(\frac{x}{y^{2}}\right)=\frac{(x y)^{2}}{2}+C \)
(B) \( \frac{x}{C y^{2}}=e^{\frac{(x y)^{2}}{2}} \)
(C) \( \left(\frac{x}{y^{2}}\right)=2 \log (x y)+C \)
(D) \( \frac{x}{y^{2}}=e^{(2 x y)}+C \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live