Let \( 0\theta\frac{\pi}{2} \). If the eccentricity of the hyperbol...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=xcBRJBap8ak
Let \( 0\theta\frac{\pi}{2} \). If the eccentricity of the hyperbola
\( \mathrm{P}^{6} \)
W \( \frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1 \) is greater than 2, then the length of its latus rectum lies in the interval:
(1) \( (3, \infty) \)
(2) \( \left(\frac{3}{2}, 3\right] \)
(3) \( \left[1, \frac{3}{2}\right) \)
(4) \( (2,3] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw