For some \( \theta \in\left(0, \frac{\pi}{2}\right) \), if the ecce...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=3ABA3AXA3KA
For some \( \theta \in\left(0, \frac{\pi}{2}\right) \), if the eccentricity of the
P
W hyperbola, \( x^{2}-y^{2} \sec ^{2} \theta=10 \) is \( \sqrt{5} \) times the eccentricity of the ellipse, \( x^{2} \sec ^{2} \theta+y^{2}=5 \), then the length of the latus rectum of the ellipse, is:
(1) \( \sqrt{30} \)
(2) \( 2 \sqrt{6} \)
(3) \( \frac{4 \sqrt{5}}{3} \)
(4) \( \frac{2 \sqrt{5}}{3} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw