From a point \( P \), two tangents \( P A \) and \( P B \) are draw...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=gJIPZU0xESU
From a point \( P \), two tangents \( P A \) and \( P B \) are drawn
\( \mathrm{P} \) to the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \). If these tangents cut
W
the coordinate axes at 4 concyclic points, then the locus of \( P \) is
(1) \( x^{2}-y^{2}=\left|a^{2}-b^{2}\right| \)
(2) \( x^{2}-y^{2}=a^{2}+b^{2} \)
(3) \( x^{2}+y^{2}=\left|a^{2}-b^{2}\right| \)
(4) \( x^{2}+y^{2}=a^{2}+b^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw