Let a function \( f: R \rightarrow R \) be given by \( f(x+y)=f(x) ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=zL0-B0fFT90
Let a function \( f: R \rightarrow R \) be given by \( f(x+y)=f(x) f(y) \) for all \( x, y \in R \) and \( f(x) \neq 0 \) for any \( x \in R \). If the function \( f(x) \) is differentiable at \( x=0 \), show that \( f^{\prime}(x)=f^{\prime}(0) f(x) \) for all \( x \in R \). Also, determine \( f(x) \).
P
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw