Consider a triangle \( P Q R \) having sides of lengths \( \mathrm{...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=DCCTBzrNkOE
Consider a triangle \( P Q R \) having sides of lengths \( \mathrm{p}, \mathrm{q} \) and \( r \) opposite to the angles \( P, Q \) and \( R \), respectively. Then
\( \mathrm{P} \) which of the following statements is (are) TRUE?
W)
(a) \( \cos P \geq 1-\frac{p^{2}}{2 q r} \)
(b) \( \cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q \)
(c) \( \frac{q+r}{p}2 \frac{\sqrt{\sin Q \sin R}}{\sin P} \)
(d) If \( pq \) and \( pr \), then \( \cos Q\frac{p}{r} \) and \( \cos R\frac{p}{q} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw