Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... VIDEO
Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \) by \( a * b=1+a b \forall a, b \in \mathbf{R} \).
Then the operation '*' is :
associative but not commutative
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/
Other Videos By PW Solutions 2023-02-25 Let \( f(x)=e^{\cos ^{-1}\left(\sin \left(x+\frac{\pi}{3}\right)\ri... 2023-02-25 Let \( y=f(x)=\frac{x+2}{x-1} \), then :
\[
\begin{array}{ll}
f(1)=... 2023-02-25 Let \( f:\left[\frac{-\pi}{3}, \frac{2 \pi}{3}\right] \rightarrow[0... 2023-02-25 \[
\tan ^{-1}\left[\tan \frac{5 \pi}{6}\right] \neq \frac{5 \pi}{6}... 2023-02-25 Find the equation of the parabola with vertex \( (0,0) \)
\( \mathr... 2023-02-25 Let \( \mathrm{A}=\{0,1,2,3\} \) and define a relation \( \mathrm{R... 2023-02-25 Is \( \tan ^{-1}\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)=\frac{1... 2023-02-25 Show that: \( \quad \sin ^{-1}\left[\sin \frac{3 \pi}{4}\right] \ne... 2023-02-25 Let \( \mathrm{Y}=\left\{n^{2}, n \in \mathbf{N}\right\} \subset \m... 2023-02-25 Assertion (A): Three states of matter are the result of balance between intermolecular forces an... 2023-02-25 Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... 2023-02-25 Prove that \( \lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}=n \).
\... 2023-02-25 Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... 2023-02-25 Evaluate : \( \lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin ^{2}... 2023-02-25 Let \( \mathrm{A}=\{1,2,3, \ldots \ldots 9\} \) and \( \mathrm{R} \... 2023-02-25 Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... 2023-02-25 Show that the Signum Function \( f: \mathbf{R} \rightarrow \mathbf{... 2023-02-25 Evaluate the following
(I)
\[
\lim _{x \rightarrow 0} \frac{\tan 2 ... 2023-02-25 Differentiate : \( f(x)=\frac{1}{\sqrt{x}} \) from first principle.... 2023-02-25 Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... 2023-02-25 Find \( \frac{d y}{d x} \) when \( y=\frac{x+\cos x}{\tan x} \).